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AN ANALYSIS OF A SINGULARLY PERTURBED 
TWO-POINT BOUNDARY VALUE PROBLEM 

USING ONLY FINITE ELEMENT TECHNIQUES 

MARTIN STYNES AND EUGENE O'RIORDAN 

ABSTRACT. We give a new analysis of Petrov-Galerkin finite element methods 
for solving linear singularly perturbed two-point boundary value problems with- 
out turning points. No use is made of finite difference methodology such as 
discrete maximum principles, nor of asymptotic expansions. On meshes which 

2 are either arbitrary or slightly restricted, we derive energy norm and L norm 
error bounds. These bounds are uniform in the perturbation parameter. Our 
proof uses a variation on the classical Aubin-Nitsche argument, which is novel 
insofar as the L2 bound is obtained independently of the energy norm bound. 

1. INTRODUCTION 

We consider the analysis of finite element methods for the singularly per- 
turbed problem 

(lla) Lu(x)= -eu"(x)+a(x)u'(x)+b(x)u(x) =f(x), 0 <x < 1, 

(1. lb) u(O) = u(l) = O, 

where e E (O, 1] is a parameter, a E C2[O, 1], b E C[0O, 1], f E C[[0, 1], 
and for x E [O, 1] we have 

(1.IC) a(x)>a>O. 

We assume that problem (1.1) has a unique solution u(x). This is guaranteed 
if e is sufficiently small (see, e.g., Gartland [4, p. 97]). In general, this solution 
has a boundary layer at x = 1. It is possible in our analysis to weaken the 
differentiability assumptions on a, b, and f, but for simplicity of presentation 
we have not done this. 

Problem (1.1) may be regarded as a linearized one-dimensional version of 
a convection-dominated flow problem. Many authors have suggested methods 
for its numerical solution, and at present it is well understood from a computa- 
tional point of view. However, the analysis of such methods (i.e., the provision 
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of proofs that numerical algorithms yield accurate approximate solutions) is 
difficult. We shall confine our attention to analyses which yield realistic upper 
bounds on the errors obtained in actual calculations. This excludes, for exam- 
ple, arguments whose error bounds involve Sobolev norms of u, because such 
norms involve negative powers of the parameter e, and so the bounds are in 
general several orders of magnitude greater than the errors obtained in practice. 

Since the seminal papers of Il'in [8] and Kellogg and Tsan [9], various numer- 
ical methods for the solution of (1.1) have been analyzed using finite difference 
techniques (see, e.g., Berger, Solomon, and Ciment [2], Emelyanov [3], Gartland 
[5], and their references). This encompasses papers such as Gartland [4] and 
Stynes and O'Riordan [15], where finite elements are used to generate difference 
schemes, but the argument is essentially carried out in the consistency/stability 
framework associated with finite difference methods. Most analyses consider 
difference schemes which satisfy a discrete maximum principle; this is a seri- 
ous restriction if one wishes to generalize these arguments to problems in two 
dimensions, because there a linear nine-point scheme which is of positive type 
cannot have truncation error of order greater than one, uniformly in e (see 
Van Veldhuizen [19]). However, we note that the papers of Niederdrenk and 
Yserentant [12] and Gartland [5] do not employ discrete maximum principles. 

In comparison with the finite difference situation, it seems more troublesome 
to adapt "classical" finite element arguments to yield realistic error bounds for 
approximate solutions of (1.1). An appreciation of the difficulties involved may 
be gained by examining Axelsson [1] or de Groen [6]. These difficulties arise 
because of the asymmetric nature of the bilinear form associated with (1.1). 
(They manifest themselves, for example, in inequality (3.9) of [6], which gives 
an upper bound for this bilinear form; this upper bound is clearly not tight 
when both arguments of the bilinear form equal u.) 

It is possible to make some progress by constructing a symmetric bilinear 
form which is equivalent to the original asymmetric one. This gives an ele- 
gant theory which measures the effectiveness of any proposed test space (see 
Morton [10]). In general, however, there are practical difficulties in computing 
the "ideal" test functions prescribed by the theory, as described in Morton and 
Scotney [ 1 1]. 

Another approach is that of Szymczak and Babuska [ 18], where L' estimates 
are obtained via a finite element analysis; however, the argument used relies on 
bounds for the Green's function of the differential operator L, and so seems 
difficult to extend to higher-dimensional problems. 

In this paper we show how certain Petrov-Galerkin methods for (1.1) may 
be analyzed using a purely finite element approach and without attempting to 
symmetrize the associated bilinear form. No use is made of discrete maximum 
principles nor of equivalent ideas such as nonnegative discrete Green's func- 
tions. We need bounds on Iu(i)(x)I, i = 0, 1, 2, but no asymptotic expansion 
of u is required. We work with fairly general meshes which from a practical 
point of view are essentially arbitrary. We consider several difference schemes 
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generated by making various choices for the trial and test spaces. We obtain 
error bounds in the usual energy norm associated with (1.1) and in the L 2[0, 1] 
norm. The magnitude of these error bounds does not depend on e; in the sin- 
gular perturbation literature, numerical methods with this property are said to 
be uniformly accurate or uniformly convergent. It is of some interest to note that 
our L2 estimate is obtained independently of the energy norm estimate; in this 
way, our analysis is quite different from the classical Aubin-Nitsche approach. 
Our work sheds light on the relationship between the choice of trial and test 
spaces and the norm (energy or L ) in which one can prove a uniform conver- 
gence result (see Remark 3. 1). The results also illustrate the importance of using 
a suitable quadrature rule when dealing with singular perturbation problems, as 
a comparison of ??4, 5, and 6 reveals. 

An outline of the argument we use to obtain our energy norm bound (in 
the case of a Galerkin finite element method on a uniform mesh) is given in 
Stynes and O'Riordan [ 16]. In O' Riordan and Stynes [ 13] we show that a vari- 
ation of this argument is valid in the case of a constant-coefficient singularly 
perturbed elliptic problem in two dimensions, using again a Galerkin finite ele- 
ment method on a uniform mesh. For brevity, several proofs below are either 
summarized or omitted; in all cases the entire argument can be found in the 
technical report [17]. 

It is not the purpose of this paper to suggest new methods for solving (1.1) 
numerically, as adequate methods already exist, but rather to construct a frame- 
work suitable for the finite element analysis of singularly perturbed equations. 
Consequently, we do not present any numerical results. Nevertheless, we point 
out that two-dimensional analogues of the finite element methods of this paper 
can be applied successfully to singularly perturbed elliptic problems, and that 
numerical results for these will appear in Hegarty, O'Riordan, and Stynes [7]. 

2. THE CONTINUOUS PROBLEM 

In this section we discuss those properties of (1.1) and of its solution u which 
we shall need later for the analysis of our finite element method. 

Notation. Throughout this paper we shall use C to denote a generic posi- 
tive constant which is independent of E and of the mesh used. We use Ci, 
i = 1, 2, 3, to denote specific positive constants (arising in proofs) which are 
independent of e and of the mesh used. We shall say that a quantity q is O(z) 
when we mean that lql < Cz for all sufficiently small z. 

First we deduce an inequality needed later to show that certain bilinear forms 
associated with the operator L are coercive. 

Lemma 2.1. Without loss of generality, we may assume that there exists C1 > 0 
such that for x E [O, 1] we have 

(l.ld) b(x) - 2a'(x) > 2C1. 
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Proof. This can be achieved by a change of variable of the form v = e -au 

with suitably chosen a. See [17] for details. 0 

From now on, we shall assume that (1.1 d) is satisfied in addition to (1. la - 
c). We also assume, without loss of generality, that Cl < 1/2. 

Lemma 2.2. The solution u of (1.1) satisfies 

(2.1) 11UIILo[o1] lull00 C 

and 

(2.2) u(i) (x)l < C(1 + eCxe-o( -X)/e) for 0 < x < 1 and i = 1, 2. 

Proof. These bounds are immediate from Kellogg and Tsan [9] when b > 0. 
If we do not have b > 0, then proceed analogously to the proof of Lemma 
2.1. o 

Our analysis will make repeated use of the arithmetic-geometric mean in- 
equality 

(2.3) yz < ty2 + z2/4t t > O. 

3. PETROV-GALERKIN FINITE ELEMENT DISCRETIZATIONS 

To begin with, we work with an arbitrary mesh 

0 = X0 < Xi < < XN= 1 

and we set hi = xi - xi_ for i = 1, ... N, with H = maxihi. For i= 
1, ... , N - 1 , -set hi = (hi + hi+1)/2. The energy norm estimate of ?4 is valid 
on this mesh; in ??5 and 6 we shall consider a slightly less general mesh which 
is described in ?5. 

We assume that e is so small that (2e/a) ln(l /e) < 1/2. Set 

M = max{ i: xi < 1 - (28/a) ln( 1/8)}. 

From (2.2) we have 

(3.1) lu'l, lu"l < C on (O, xM). 

We shall refer to [xM, 1] as the layer region. Outside [xM, 1], we use piecewise 
linear "hat" functions in both the trial and test spaces; as Axelsson [1] has 
pointed out, one needs to use some form of exponential upwinding only in 
the neighborhood of x = 1. In the layer region [xM, 1] we consider three 
possibilities: 

(i) using approximate L-spline trial functions and hat test functions (?4), 
(ii) using hat trial functions and approximate L*-spline test functions (?5), 

(iii) using approximate L-spline trials and approximate L*-spline tests (?6). 
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In all cases, the integrals used to define the schemes can be evaluated exactly. In 
general, the difference schemes generated will not satisfy a discrete maximum 
principle. 

Remark 3.1. Possibility (i) above will yield an energy norm result, possibility 
(ii) yields our L2 norm result, while (iii) yields the same L2 norm result and 
an improved energy norm result. This trichotomy illustrates the role played 
by each space in obtaining uniformly accurate numerical methods for singular 
perturbation problems. 

4. L-SPLINE TRIAL FUNCTIONS IN THE LAYER REGION 

In this secton we give a Petrov-Galerkin finite element method for which we 
derive an error estimate in an energy norm appropriate to (1. 1). 

On [0, XM] we use hat trial functions. Define a piecewise constant function 
& which approximates a(x) by 

ai al(x ,xi] = (a(xi_.) + a(xi))/2 for i = 1, ... , N. 

Next, define a basis {i: i = M, ..., N - 1} for a space of approximate 
L-spline trial functions on [xM, 1] by 

(4.1) Lq$-eq$ +abi=O on[xM, 1 

0i(xj) = 61j for j = M, ...,N, 

where ^ means that mesh points are excluded. Our trial space S now consists 
of hat trials on [0, XM] and L-spline trials on [xM, 1]; in particular, the basis 

function qm is a hybrid hat/L-spline. 
We take our test space T to be the span of {I i: i = 1, . . . , N - 1 },where 

each yi is the hat function satisfying yi (xj) = 6,j for all j . 

Lemma 4.1 (interpolation error in the L?? norm). Let ui E S interpolate to the 
solution u of (1.1) at each node xi, i = 0, ..., N. Then for x E [xi1, xi], 

(i) }(u-)(x)l <Ch 2 if 1 < i <M, 
(ii) (u - u1)(x)l < Chi(l - e-hil) if M < i < N. 

Proof. Inequality (i) is a standard result using (3.1). To prove (ii), use a 
maximum principle/barrier function approach. See [17] for details. 0 

The next result relates the L and L2 norms of the derivative of an L-spline 
over each subinterval within the layer region. 

Lemma 4.2. For each w E S and each i E {M +1,.. , N}, 

l Iw'(x)I dx < C(l - eahi/e)l/261/2 f IW'(X)12 dx 

Proof. Compute each side of the inequality in terms of Iw (xi) - w (x1_ )I . See 
[17] for details. 0 
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Definitions and notation. Let (.,*) denote the usual L 2[0, 1] inner product. 
Let (., *)^ denote that the integration is only over [0, l]\{x0, ..., Xy}. 

Define to be the usual L [0, 1] norm, and 11 ' Ild to be its discrete 
analogue, viz., 

{N-1 A1/2 

AlWld {ZEhiw(xi)} 

for all w E Ho (0, 1) . Then our energy norm is defined to be 

IllwIII 2 e;!wII2 + 11W,12}1/2 

forall wEH (0, 1). Set 

B(v, w) = (ev', w') + (av', w) + (bv, w) 

and 
N-1 

(4.2) B(v, w) = (eV', w') + (av', w) + E hi(bvw)(xi) 
i=l 

forall v, WEH (O, 1). 
We begin the analysis by showing that the bilinear form B(., *) is coercive 

over S x T. 

Lemma 4.3. For each v E 5, let VT E T interpolate to v at each xi. Then for 
H sufficiently small (depending only on b, a', and a")), 

B(v, VT) > C1jjjVIII2. 
Proof. We have 

B(v, vT) = B(v, v) + B(v, VT - V) 

= 6IVII2 + Ehi (b(x,) - (l/2)a'(x,) + 0(hi)) v2(xi) 
i 

+ (-eV"t + av', (VT - v))^ (on integrating by parts and using 

a, - ai= hi(a'(xi) + 0(h,))) 

> Cillllvll2, 

for H sufficiently small, where we have used (1.1 d), VT = v on [0, XM], and 
both (4.1) and (v - VT)(Xd) = 0 on [xM, 11. ? 

Our computed solution uh e S is obtained from the linear system of equa- 
tions 

(4.3) B(uh, ti) ==hif(xi), i= 1, ..., N- 1. 

It follows from Lemma 4.3 that (4.3) has a unique solution. 

Notation. We set p = aH/E . 
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Proposition 4.4. For H sufficiently small (independently of e), 

- UhIII < CH + CH"'2(l - e-p)"'. 

Proof. From Lemma 4.3, we have 

(44) C|1111u1-U III < B(uI - u , (u1 - Uh)T) h 

=B(ui - u (ui - UT Y+ B(u -u ,(UI- U Y' 

We bound each of these B(., .)-terms separately. First, 

h hi hi 
B(ui-u, (u -u )T) = (UI-U,-e(UI-U )T-a(uI-u )T) 

hi 
= (u-uI, a(u- )T) ' 

because (u1- Uh)T is piecewise linear and (u1 - u)(xi) = 0 for each i . Hence, 

B(U,-u, (U-U )TT) 
M 

h~~~~~~~ 

< CEh 21(U-u _ Uh)(xi) - (u - u )(xi-) 
i= l 

(using Lemma 4. 1) 
M 

< C (hi) I(ui -U )(xi) 
1= 1 

N 1/2 

(4.5) ~+ C 1: hi(l -e -ailc 3/2 1/2 { 
i 

I( u hu)' (X 12 d } 
i=M+ 1x' 

(by Lemma 4.2) 
M M 

< C(hi) +(Cl/8)Zhiu(uI-u )(xi) I 
i=1 i=l 

N-1 

+ C(l - e ) (hi) + (C1/8)ell(u, -u uh|| 
i=M+1 

(using (2.3) twice) 

< CH(l - e-P) + Cl/8111u, - uhIII2 (since E hi < 1) 
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Returning to (4.4), we have 

B(U - u, (ui-U )T)= B(U, (u - u )T- B(U , (UI U )T 

=B(u, (uI-u ) T)-B(u, (u,-u u T) + (f (UI-U T) 
N-1 

(4.6) - >E f(xi)hi(u1 - uh)(xi) (by (1.la) and (4.3)) 

= ((a - a)u', (ui -u)T) + E hi(bu(u -u h))(xi) 

-(bug (ui - )hY + 1(UI -U h)(xi) (f -f(xi), 9 v 

Set Oi - fXi+i u'(x)I dx . Then, using bounds from Lemma 2.2, we have 

0i < Chi + C(e-a(l-xi+1)/e - e-a(1-xi- )/1 
e 

It follows [17] that 

E02 < CH+ C(1 -e r). 

Thus, 
N-1 

-a)u', (ui - U)TI < C E hij(u - uh (xi)I1i 
i=1 

(4.7) < h, [(Cl/8)(u1 - uh)2(xi) + Co2] (using (2.3)) 

< (Cl/8)llu1 - Uh 2I + CH2 + CH(1 - e P). 
As regards the terms involving f from (4.6), we have 

N-1 

|E(u-u - )(xi)x(f - f(xi), v')d 

(4.8) < C (hi)2 (u - uh (xi)I 

? E{C(hi)3 + (C,/8)hi(ui - uh)2(xi)} (using (2.3)) 

< CH + (C1/8)11u1 - u lid. 

Taking the remaining terms in (4.6), we can essentially imitate the previous 
calculations to obtain 

N-1 

.9) |~~ hi(bu(u, - u ))(Xi) -(bU (u, - u ) T) 
(4.9) ~~~i=1 

< (C1/8)llju - uIlid + CH2 + CH(1 - e 
Now substituting (4.7), (4.8), and (4.9) into (4.6), we obtain 

hu h (u,-U ) (3C,/)111U,- 2 2 + 
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Combining this inequality with (4.4) and (4.5) then completes the proof of 
Proposition 4.4. 0 

We now need to estimate IJu - u1jfJ. 

Proposition 4.5 (interpolation error in the energy norm). For all meshes we have 

IIIu - u,1jj2 < CH(H + (1 - e-p)eln(l/e)). 

Proof. Integrating by parts, we have 

10 B(u - u,, u - uj)= ((u - uI)% (u - u)') +(b -a'12, (u_ -U/)2) 
> Illu - uIuu12 (using (1.ld) and IIu - uIlld =0). 

On the other hand, 

B(u - u, u-u1) = (f- bu, u-u1)- f au(u - u1) dx 
(4.11) 1 

+I (a-a)u (u- u)dx 
XM 

by ( 1. la) and our choice of trial functions. Here, 

j(f - bus, u-u1)j < c ju - u1l dx + C ju - u1l dx 

2 (4.12) < CH2 + C(1 - xm)H(l - e P0) (by Lemma 4. 1) 

< CH2 +CH(1 -e P)(H+eln(1/e)) (bychoiceofM) 

? CH2 + CH(l - e O)e ln(l /e). 

Also, 

pT/ au,(u - u,) dx + f(a - a)u4(u - u1) dx 

N 2x 
(4.13) < CEh f u'(x)j dx (by Lemma 4.1) 

N 

< CLh21u(xi) - u(xj_ )1 < CH2 
i= 

since f" Ilu'(x)J dx < C from (2.2). 
Combining (4.10)-(4.13), we get the desired result. 0 

Remark 4.6. Since 1 - e-p < p for all p > 0, this bound essentially states that 
jju- ujIII is almost O(H). 

We can now easily derive the main result of this section. 
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Theorem 4.7 (energy norm error estimate). For H sufficiently small (indepen- 
dently of E ), and uk defined by (4.3), 

|llu - uhIII < CH+ CH'"2(l - e-")1/2 
Proof. Combine Propositions 4.4 and 4.5. 0 

Remark 4.8. Theorem 4.7 trivially implies that, uniformly in 8, Iu - uhlld < 

CH12. It is possible to show that, on a uniform mesh, IIu - uhlld < CH. 

5. L -SPLINE TEST FUNCTIONS IN THE LAYER REGION 

We now consider a different Petrov-Galerkin finite element method for solv- 
ing (1.1). This method is closely related to one used in Stynes [14]. However, 
the analysis in [14] is finite difference in nature, whereas the argument below 
uses only finite element techniques. We prove an L2 error estimate of order H 
for the method. This estimate is obtained directly, without use of any energy 
norm error estimate. 

Assume that the mesh is arbitrarily graded on [xM_I, 1], i.e., hM > hM+l > 
* > hN. This is not a practical restriction, as it would be quite unusual to 
coarsen the mesh as one moves into the boundary layer. The mesh on [0, XM_ 1 ] 

is still unrestricted. With a view to proving an O(H) error bound in the L2 
norm on such a general mesh, we replace the approximation a by a modified 
piecewise constant approximation a in order to obtain the coercivity result of 
Lemma 5. 1. For the definition of a, see [ 14]. Regarding a as a quadrature rule 
which enables evaluation of those integrals arising in the finite element method, 
it has the property of automatically varying with the local-cell Reynolds number 
in such a way as to ensure stability of the method. In particular, on intervals 
[xi_1, xi], where hi << e, we have a ai, Iand on intervals where h >? E, 
we have Z ; a(xi1). 

Take the trial space S to be the span of {k,: i = 1,... , N- 1}, where each 
Xi is the hat function satisfying Oi(xj) = bij for all j. 

In our test space T we use hat functions on [0, XM]. Our approximate 
L*-spline test functions are defined as follows: for i = M, ..., N- 1, let tv 
satisfy 

L -- -eVi -a i =O on [XM, 1] 

Wi(xj) = ij, j = M,... ,N. 
Our test space T is the span of {Wi1: i = 1,..., N- 1}, where for i= 
1, ... ,M - 1, Y// is a hat function centered at xi, and -M is a hybrid 

hat/ L -spline. 
We also define a set of functions { @v: i = 1, ..., N - 1 } analogous to the 

{4I7}. We take each {@/} to satisfy L-*v- = 0 on [xM, 1]'; in all other 
respects, i is defined as TVi was defined. 

Set 
=N-1 1/2 
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for all w E H(O , 1) . On H (0, 1), this norm is equivalent to the discrete L2 
norm defined in the last section (see [17]). 

Set 
N-1 

B(v, w) = (ev', w') + (av', w) + E(l, @v,)(bvw)(xi) 
i=l 

forall v, wEH (0, 1). 

Lemma 5.1. For each v E S, let VT E T interpolate to v at each xi. Then for 
H sufficiently small (depending only on b, a', and a"), 

B(v, VT) > CI IIIVTIII 

Proof. See [17]. 0 

Our computed solution uh E S is now obtained from the linear system of 
equations 

(5.1) B(uh,Ty71)=(1, @1)f(xi), i=1,...,N-1. 

To obtain an estimate for II u - u Ild' , we employ a duality argument. Assume 
that IIuI - uhIld, # 0, as otherwise we are done. Define w E T by 

(5.2) B(Ob, w) = ') @(u= -Iu )(x,)Q.) (xi) 

Now, letting u1 E S interpolate to u at each node, 

- |uhld'- = IIU - UhIld' = B(uI - uh w) (from (5.2)) 
(5.3) = B(u1-u, w) + B(u-u , w). 

Theorem 5.2 (discrete L2 norm error estimate). For H sufficiently small (in- 
depently of e), and uh defined by (5.1), 

Iju - U.l?d < CH. 
Proof. The two right-hand side terms of (5.3) can be bounded separately, using 
arguments similar to those of ?4. See [17] for details. 0 

6. SIMULTANEOUS ENERGY AND L NORM ERROR ESTIMATES 

Let the trial space S be as in ?4 (so S consists of L-splines in the layer 
region), and let the test space T be as in ?5 (so T consists of L*-splines in 
the layer region). Let the mesh be arbitrarily graded in the layer region as in ? 5. 
We use the bilinear form B(. I ) of ?5. 

Define our computed solution uh E S by 

(6.1) B(uh , = (1, 1) f(Xi) i = 1 ,... , N- 1. 

The following theorem improves the main result of ?4; it also includes a result 
similar to that of ?5. 
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Theorem 6.1 [17]. For H sufficiently small (independently of e ), and uh defined 
by (6.1), 

llu - uhll < CH112(H+ (1 - e P)gIn(1/8)) 

and 
Ilu - Uhlld < CH. 

Corollary 6.2 [17]. For H sufficiently small (independently of e), and uh de- 
fined by (6.1), 

Ilu - u 11 < CH. 
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